

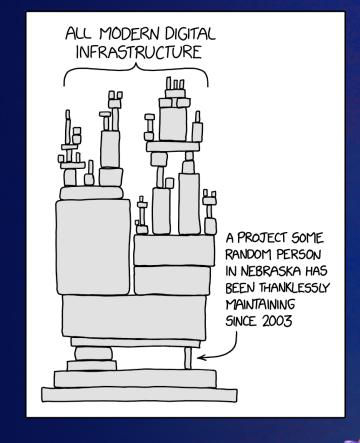
随着云原生时代的到来,企业开发者面临着相较于以往更加严峻的挑战。

这些挑战既包括软件功能方面,也可能来自基础设施运维能力方面,而来自安全上的威胁,更是从方方面面影响着我们。

首先是隐私安全保护方面,各种层出不穷的数据泄密事件,让我们真正实现了在黑客面前的隐私数据共享。

2022年7月,某地爆出大规模隐私数据泄密事件,黑客在某论坛上猖狂放话,称"出售上海政府国家警察数据库,包含数十亿中国公民的信息,包括姓名、身分证及所有犯罪详情,以20万美元出售。"案件迄今仍未被证实,如果被证实,将可能成为有史以来最大的隐私数据泄漏事件。

2020年,某著名互联网公司向警方报案,称其公司遭受黑客攻击,造成了一定程度的数据泄漏,经司法鉴定,当事人逯某任职于长沙浏阳某公司,在为2019年11月-2020年7月的8个月时间里,其通过该电商平台公开链接,批量爬取用户的数字ID、淘宝昵称、手机号码等加密信息爬取淘宝用户信息共计11.8亿条,堪称人均一条。



NET Conf China 2022 用源·安全·赋能

在第三方开源软件安全方面,不断涌现的新漏洞一次又一次的挑战着我们的认知。

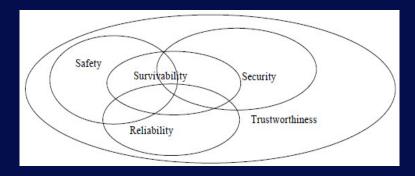
2021年12月11日,著名日志框架log4j爆出核弹级漏洞,攻击者只需向目标机器传送一段特殊代码,就能触发漏洞,实现在远程执行代码控制目标机器。众所周知,log4j已经被广泛运用于大量基础设施如kafka、redis、jenkins等组件中,一旦出现问题,无异于大厦基础设施崩塌,时至今日,log4j的遗毒依然令人闻之色变。

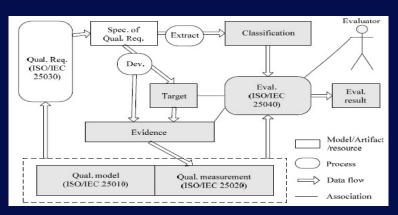
据媒体10月25日报道,研究人员披露了SQLite数据库库中整数溢出漏洞(CVE-2022-35737)。该漏洞是2000年10月的代码更改时引入的,这个已存在22年的漏洞影响了SQLite版本1.0.12到3.39.1。如果在CAPI的字符串参数中使用数十亿字节可能导致数组边界溢出,攻击者成功利用该漏洞可在目标系统上执行任意代码。

除了安全方面的威胁,软件稳定性问题也逐渐从互联网故事走入了我们的 日常生活。

9月1日至4日,成都在全市范围内开展全员核酸检测。9月2日晚,核酸检测系统出现异常,导致采样排队时间过长,核酸检测进度缓慢,给市民群众带来困扰和不便。做核酸的队伍至少排3个小时,还有工作人员齐齐举起手机找信号的场面也令人唏嘘,网友调侃原来抬头并不一定是看星星,而有可能只是在找信号。这也是继西安健康码崩溃后的又一大核酸系统故障事件。

而三个月后的11月24日7时左右,"四川天府健康通"又出现了页面一直 无法登录问题。部分市民排队做核酸检测时,也无法打开四川天府健康通 扫码录入。


各种问题层出不穷,是否有一种更高效的解决方案?



何为可信开发

2007年底,国家自然科学基金委员会启动了"可信软件基础研究"重大研究计划,投入经费1.9亿元,至2016年底结题。2013年出版的《可信软件设计》对该概念进行了进一步说明,可信大概包含了安全性(safety)、保密性(security)、可靠性(reliability)、可生存性(survivability)、完整性(integrity)等,总体上可信性覆盖以上这些术语的内涵。

中国信息通信研究院推出了《可信云》的云计算服务评估品牌,从上述5个大方面,建立了 软件研发效能度量成熟度评估标准。而安全能力被设计为基石。

可信开发实战

可信开发实战

需求规划	应用设计	应用开发	应用测试	应用发布	运维运营
安全红线设计可信需求分析	 隐私影响分析 威胁建模分析 可信设计与评审 	 可信编码规范、代码审查 开源及第三方软件管理 代码漏洞检查,静态代码扫描 密钥保护 	白盒测试黑盒测试渗透测试	 哈希校验 网站检查 证书检查 环境配置检查 查 日志存储 	 主机安全扫描 计算理 持续监控、动态风险管理

可信开发流程中的常见问题

开发工具

- 来自开发工 具、开发环 境的威胁。 如破解软件、 后门软件等。
- 来自jenkins 等持续集成 工具等漏洞。

开发团队

- 内部无意识 的安全隐患。 如配置文件 明文密钥, 密码过于简 单,隐私数 据未加密等。
- 密码明文分享。
- 外部有意识 的攻击行为。

开发生命周期

- 硬编码密钥。
- 第三方软件 威胁
- 代码腐化
- 加密算法
- 用户隐私保 护

软件产品发布

- 恶意获取软件。
- 篡改签名。

产品部署

- 环境攻击
- 生产环境隐 私数据泄漏

如何应对常见的威胁

通信矩阵

如各种高危漏洞, 务必要保持端口 最小化

防范病毒和后门

定期进行漏洞扫描, 补丁管理。

应用安全

用户身份验证,谨慎设计匿名接口,防范窃听,标识欺骗,越权攻击。使用TLS1.2以上。

加密算法

采用可信的加密算法,杜 绝使用低安全等级低加密 算法,如DES,3DES, AES-cbc填充模式。 Md5或base64。 采用AES- ECB256 以上或 pdkdf2 100w次迭代, rsa2048以上。

隐私保护

严格按照最小化获取 隐私数据的政策,隐 私数据采用多重加密 保护,如AES+盐加 密。

密码管理

密码杜绝明文存储, 应使用多重加密,使 用一组可替换的根密 钥和工作密钥进行保 护。

操作失误

多做备份,加强培训,谨防删库跑路。

开源及第三方软件安全

行业		2020年开源漏洞 代码库占比(%)	变化趋势
物联网	64	40	41
航空航天、汽车、运输和物流	60	59	1
互联网和移动APP	56	28	1
教育科技	54	53	1
能源与清洁科技	53	79	1
营销科技	53	95	1
金融服务和金融科技	53	62	1
零售与电子商务	51	71	
制造业、工业和机器人	51	21	1
企业软件/SaaS	50	62	1
虚拟现实、游戏娱乐和媒体	46	55	1
医疗保健、健康科技和生命科学	45	68	1
计算机硬件及半导体	43	42	1
大数据、AI、BI和机器学习	42	58	1
互联网和软件基础架构	41	35	1
电信和无线	41	57	1
网络安全	38	57	1

来源: 新思科技, 中国信息通信研究院

图 21 全球重点行业开源代码库安全风险热力图

Table 2: Vulnerability Severity Levels Based on the NVD and CVSS

Table 2 describes how an ASV scan solution categorizes vulnerabilities and risks that are considered High or Medium severity.

CVSS Score	Severity Level	ASV Scan Result	Guidance	
7.0 through 10.0	High Severity	Fail	To achieve a passing ASV scan, these vulnerabilities must be corrected and the affected systems must be re-scanned after the corrections (with a report(s) that shows a passing ASV scan).	
4.0 through 6.9	Medium Severity	Fail	Organizations should take a risk-based approach to correct these types of vulnerabilities, starting with the most critical, until all vulnerabilities rated 4.0 through 10.0 are corrected.	
0.0 through 3.9	Low Severity	Pass	While passing ASV scan results can be achieved with vulnerabilities rated 0.0 through 3.9, organizations are encouraged, but not required, to correct these vulnerabilities.	

解决方案:制定第三方开源软件管理制度,严选软件,严格遵循开源协议,定期了解漏洞情况,及时更新版本。

安全测试的套件

NET Conf China 2022 用源·安全·賦能

OWASP Zap

NMap

Burpsuit

安全扫描工具

结语

互联网时代不断涌现的新的技术固然能够给我们的生活带来改变,但切不可追求技术的 先进性,而忽略了软件工程的自身修炼。可信开发涵盖了安全、运维、稳定性、第三方 软件、代码质量等多方面的内容,有望为企业应用开发者构筑起一道道防线,构建出真 正可信赖的高质量软件,为客户不断的赋能,不断的创造出更加丰富的业务价值。

